LOGISTIC REGRESSION MODEL FOR PREDICTING FIRST SEMESTER STUDENTS GPA CATEGORY BASED ON HIGH SCHOOL ACADEMIC ACHIEVEMENT
Keywords:
logistic regression, prediction, accuracy model, Crosstab tableAbstract
Faculty of Information Technology, Duta Wacana Christian University (DWCU) has two methods of admitting new college students in which the first is on the basis of educational achievements in high school whereas the second is on the basis of regular test entrance examination. This research will seek forms of functional relationships through logistic regression to the first semester GPA category of the student in Faculty of Information Technology, Duta Wacana Christian University. The first semester GPA category is used as the dependent variable and the location of high school, high school class, high school status, and level of English test result are used as independent variables. With regards to the training data required to create a logistic regression model, we used students’ admision data from 2008 through 2014, while the students’ data of 2015 is taken as the testing data. The accuracy of the model in predicting data, is measured by the percentage of correct predictions in this regard through Crosstab tables between the predicted data and the real observation of the 1st semester GPA from new students of 2015 class. This research found seven models. The highest percentage of correct predictions between the logistic regression model and training data is 79.4% .There is a change in the logistic regression form, three models influence only by level of English test result while the remaining four models are influenced by the level of English test result and high school location.
Downloads
References
Ahmad, F., Ismail, N., & Aziz, A. (2015). The Prediction of Students’ Academic Performance Using Classification Data Mining Techniques. Applied Mathematical Sciences, 9(129), 6415 - 6426. Retrieved from http://dx.doi.org/10.12988/ams.2015.53289
Aziz, A., Ismail, N., & Ahmad, F. (2013). MINING STUDENTS ACADEMIC PERFORMANCE. Journal Of Theoretical And Applied Information Technology, 53(2). Retrieved from http://www.jatit.org/volumes/Vol53No3/21Vol53No3.pdf
Bhattacharyya, & Johnson R.A. (1977). Statistical Concepts and Methods. John Wiley & Sons, Inc.
Hajarisman, N. (1998). Kajian Perbandingan Model Regresi Beta Binomial dengan Model Regresi Logistik dan Penerapannya untuk Menduga Pola Kelulusan Mahasiswa TPB-IPB (Magister). Institut Pertanian Bogor. Retrieved from https://core.ac.uk/download/pdf/32354709.pdf
Han, J., & Kamber, M. (2011). Data Mining : Concepts and Techniques. Morgan Kaufmann Publishers.
Hosmer, D., & Lemeshow, S. (2003). Applied Logistic Regression. John Weley and Sons, Inc.
Jadrić, M., Garača, Ž., & Ćukušić, M. (2010). STUDENT DROPOUT ANALYSIS WITH APPLICATION OF DATA MINING METHODS. Management, 15(01), 31-46.
Kantardzic, M. (2003). Data Mining Concepts, Models, Methods and Algorithms. IEEE Press and Wiley-Interscience.
Kleinbaum, D., & Klein, M. (2002). Logistic Regression : A Self-Learning Text. New York: Springer Verlag New York , Inc.
RISET, M., TEKNOLOGI, & DAN PENDIDIKAN. (2015). PERATURAN MENTERI RISET, TEKNOLOGI, DAN PENDIDIKAN TINGGI REPUBLIK INDONESIA NOMOR 44 TAHUN 2015 TENTANG STANDAR NASIONAL PENDIDIKAN TINGGI (1st ed.). Jakarta: Departemen Riset Teknologi, dan Pendidikan Republik Indonesia. Retrieved March 01, 2017, from http://kopertis3.or.id/v2/wp-content/uploads/PERMENRISTEKDIKTI-NOMOR-44-TAHUN-2015-TENTANG-SNPT-SALINAN.pdf
Rud, O. (2010). Data Mining Cook Book Modeling Data for Marketing. Risk and Customer Relationship management. John Wiley & Sons Inc.
Santosa, R., & Chrismanto, A. (2016). Regresi Logistik untuk Prediksi Kategori IP Mahasiswa Fakultas Teknologi Informasi UKDW. Not Published Research Report.
Santosa, R., & Setiadi, H. (2015). Analisis Faktorial untuk Uji Pengaruh Beberapa Faktor terhadap Indeks Prestasi Mahasiswa Fakultas Teknologi Informasi UKDW. Not Published Research Report.
Thakar, P., Mehta, A., & Manisha. (2015). Performance Analysis and Prediction in Educational Data Mining: A Research Travelogue. International Journal Of Computer Applications, 110(15).
Vadivu, P., & Bharathi, D. (2014). Survey on Students’ Academic Failure and Dropout using Data Mining Techniques. International Journal Of Advances In Computer Science And Technology, 3(5). Retrieved March 01, 2017, from http://www.warse.org/pdfs/2014/ijacst03352014.pdf