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ABSTRACT 
 

Independence between discrete variables and categorical factors is analysed, where discrete 

variables are notes, note types and rests. Identity of factor style which can obtain values classic, 

romantic or modern can be recognized by analysis of variance or chi-square test. Grouping of 

these variables by clustering methods for each mode (major and minor) is presented. As a result 

some clusters match musical triads or chords. Interpretation of clusters is shown by dendrogram 

with dividing line. The results of note type clusters demonstrate the effect of modern style, where 

the syncopated rhythm dominates. 

In this paper we investigate the problem how to choose the number of clusters. In addition we try 

to answer the question if the probability clustering is more advantageous than the geometrical 

clustering. The results show that mathematical statistics methods produce output that satisfies the 

norms and standards of music. 
 

Keywords: Music Data Analysis, Analysis of Variance, Homogeneity Groups, Probability 

Clustering, Geometrical Clustering, Number of Clusters. 
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INTRODUCTION: 

What is music? What is the sound of music? These questions are probably never going to find a definitive 

answer. The exact definition is outside the scope of this work. For example, modern scientists are interested to 

establish the specific acoustic characteristics allowing people to distinguish one musical instrument from the 

other (Hartman, 1997). New questions and some interesting discoveries were obtained while trying to answer 

this question. Music is the only art area where the shape and means correspond; just the same as mathematics is 

the only science where methods and subjects are identical. The relationship between mathematics and music is 

the result, i.e. the product of thinking without a tangible form (Blagoveshchenskaya, 2004). Pythagoras was the 

first man who found a connection between mathematics and music. The sound coherence laws were discovered 

and this provided the basis for the modern diatonic music. An instrument tuning named Pythagoras is still used 

today. Music sounds are in harmony if it satisfies certain mathematical conditions. Despite tight connection 

between music and mathematics, the idea of using mathematical methods in musicology was used only in the 

1950s. Last decade various mathematical methods of mathematical statistics, such as Fourier harmonic analysis, 

Markov chain models was successfully applied in musiclogy. Though, stochastic methods such as correlation 

analysis, time series analysis, analysis of variance, data clustering were used very rarely in this area. 

Let X(1), X(2), ..., X(n) be a sample of independent random values (musical notes) from compositions, chosen 

by factor of style, composer or mode. This discrete variable can get a whole number value from 0 to 11, which 

means that octaves are divided into twelve equal semitones (Blagoveshchenskaya, 2004). So all the piano keys 

factorized modulo 12 represent a cyclic structure in the sense that the notes sound in unison (we would say, 

coincide) if and only if the visible distance between their keys is equal to an octave that is just 12 keys. Notes in 

an equal temperament octave form an abelian group with 12 elements (Lewin, 1982). ;12Z  – commutative 

group is used to prepare the data for analysis by transformations and alterations. Other variables – rests and 

types of notes – can gain discrete values from  
64
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1*  . It is important that analysis is made for transposed compositions to C-

major and a-minor and values are independent of their order in sample. 

This paper comprises the following sections: Section 2 describes methods and models used for music works 

analysis; Section 3 reviews the analysed estimators and summaries results; Section 4 contains the resumptive 

conclusions. 

 

METHODS AND MODELS: 

The data consist of 330 compositions in classic, romantic and modern style. Information about variables and 

factors is kept in music *.xml files. After information of musical compositions is analysed and musical norms 

and standards are evaluated, several methods of statistical analysis are suggested: 

a) reports and graphs of descriptive statistics; 

b) goodness of fit hypothesis test of notes, note types and rests by factors; 

c) analysis of variance: 

 factors – musical style and composer – influence on means of notes, note types and rests, 

 Tukey’s multiple grouping for styles and composers; 

d) correlation analysis and contingency tables statistics: 

 level of relationship between notes, note types and rests; 

 relationship between categorical factors and variables; 

e) clustering: 

 notes and rests classification by mode and style, when geometrical and probability methods are 

employed. 

Review of main these methods and results are presented. 

Analysis of variance displays whether there is relation between dependent variables and factors. In analysis of 

variance Tukey’s multiple grouping method considers all possible pairwise differences of means at the same 

time. Suppose there are n observed notes (or note types, or rests) X(1), ..., X(n) from an approximate normal 

distribution with mean µ and variance σ2 and studentized range is g. The Tukey confidence limits for all 

pairwise comparisons with confidence coefficient of at least (1–α) are (Tukey, 1953; Kramer, 1956): 
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with number of style (or composer) groups r, total number of data values n and size of groups ni and nj (Rafter, 

Abell, & Braselton, 2002). 

Independence of categorical variables can also be identified by chi-square test. The chi-square statistic is 

computed as (Radlow & Alf, 1975) 
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ij  , nij – expected frequency of ith value of notes (or note types, or rests) in jth category. 

When grouping variable values by there frequencies the results are clusters. We use three types of clustering 

methods: geometrical clustering and probability ones. Geometrical clustering joins clusters with the smallest 

distances, which can be evaluated by (Sokal & Michener, 1958; Milligan, 1980; Ward, 1963): 

o average linkage method – 
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two clusters is the average distance between pairs of notes (or rests), one in each cluster; 

o centroid method – 
2

LKKL XXD  ; in the centroid method, the distance between two clusters is 

defined as the (squared) Euclidean distance between their centroids or means; 

o single linkage method – ))(),((minmin jXiXdD
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 ; in single linkage, the distance between two 

clusters is the minimum distance between the notes (or rests) in one cluster and the notes (or rests) in the 

other cluster; 

o Ward’s minimum-variance method – 
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 ; in Ward’s minimum-variance method, the 

distance between two clusters is the ANOVA sum of squares between the two clusters added up over all the 

variables; at each generation, the within-cluster sum of squares is minimized over all partitions obtainable 

by merging two clusters from the previous generation; and others. 

The special case of geometrical clustering is procedure that combines an effective method for finding initial 

clusters with a standard iterative algorithm for minimizing the sum of squared distances from the cluster means. 

The result is an efficient procedure for disjoint clustering of large data sets. This procedure was directly inspired 

by the k-means algorithm (MacQueen, 1967). It uses a method that Anderberg M. R. calls nearest centroid 

sorting (Anderberg, 1973). A set of points called cluster seeds is selected as a first guess of the means of the 

clusters. Each observed note (or rest) is assigned to the nearest seed to form temporary clusters. The seeds are 

then replaced by the means of the temporary clusters, and the process is repeated until no further changes occur 

in the clusters. 

Notes (or rests) clustering using the EM algorithm. If the density function of the random vector X has q 

maxima, it can be approximated by a mixture of q unimodal densities: 
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Let the distribution of the random vector X depend on a random variable v that takes on the values 1,...,q. It is 

interpreted as the number of class the observed object belongs to. In the classification theory quantities 

pk=P{v=k} are called a priori probabilities that the observed object belongs to the kth class, and quantities 

πk(x)=P{v=k|X=x} are a posteriori probabilities. The function fk is treated as the conditional density of X as v=k. 

By the term soft clustering of a sample we refer to the estimation of the values πk(X(t)) for all k=1,...,q, t=1,...,n. 

A sample is hard-clustered if estimators )(ˆ),...,1(ˆ nvv  of v(1),…, v(n) are indicated where v(t) denotes the class 

number of the note (or rest) X(t). 

The mixture of Gaussian distributions is the most popular model in the clusterisation theory and practice. 

Therefore, in this section, we assume that fk(x) are Gaussian densities with means Mk and covariance matrices 

Rk. Let f(θ,x) denote the right-hand side of equation (3), where θ = ((pk, Mk, Rk) k=1,…,q). Since 
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the estimators of a posteriori probabilities are obtained as usual by the “plug-in” method which replaces the 

unknown parameter vector θ on the right side of (4) by its maximum likelihood estimate )(maxarg* 

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))(,()(  . The EM algorithm, an iterative procedure most frequently used to find this estimate, 

was also applied in this study. 

Let 
)(ˆˆ r

kk    be the estimates obtained after r cycles of the iterative procedure. Then a new estimate 

)1(ˆˆ  r  is defined by the equalities 
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for all k=1,…,q. Inserting 
)1(ˆ r  into the right-hand side of expression (4) we get ))((ˆ )1( tXr , qk ,1 , 

nt ,1 . Using this iterative procedure a non-decreasing sequence )ˆ( )(rL   it obtained, however its 

convergence to the global maximum depends on the initial value 
)0(̂  (or 

)0(̂ ). The simplest solution of the 

initial value selection problem is a random start technique: the EM procedure is repeated many times from the 

random starting value )0(̂ . The result with the maximal value of )ˆ(L  is selected as final. The methodology of 

consecutive extraction of the mixture components (Rudzkis & Radavicius, 1995) can be also applied as well. 

For choosing the number of clusters q, various tests of model adequacy can be used. Beginning with q = 1, the 

values of the parameter q are consecutively increased untill the hypothesis on model (3) adequacy is not 

rejected (e.g., with the significance level  = 0.1). To test this hypothesis, a criterion based on the increment of 

the maximum likelihood function can also be applied. Let )(ˆ q  be an estimator of θ obtained by the EM 

algorithm with the number of clusters equal to q. Let 

))(ˆ())1(ˆ( qLqL    (5) 

and let G(u) denote an estimated distribution of  obtained by making use of the parametric bootstrap (see, for 

example, Hall, 1992; Wong, 1985) under the condition that mixture model (3) of Gaussian distributions is valid. 

Then the hypothesis on model (3) adequacy is not rejected if 

1 – G(ψ)  α.
 

(6) 

The number of clusters obtained in this way is denoted by q*. 

Applying hierarchical techniques it is possible to obtain a dendrogram (binary tree) whose terminal nodes are 

the treatment means (Rienzo, Guzman & Casanoves, 2002). 

 

SUMMARY OF RESULTS: 

Analysis of variance and correlation shows that styles differ by independent variable note. Analysis of variance 

as a result gives homogeneity groups by Tukey grouping method (see Table 1), which excludes styles into 

separate groups, where N – is size of sample, with it’s mean. Coefficient of determination indicates that the 

model accounts for less than 1% of variation. But in case data consist of 330 compositions, it’s a small part of 

population in all different styles. 

Table 1. Grouping of variable note by factor style. 

Tukey Grouping Mean N Style 

A 0.179210 114108 Romantic 

B 0.163817 140008 Classic 

C 0.148669 249005 Modern 
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Correlation analysis statistics show that variable note and factor style has no relation with probability 0.0001, 

which means that they are dependent (see Table 2). Rests and type of notes gives similar results in analysis of 

independence. 

Table 2. Chi-square test for variable note and factor style. 

Statistic DF Value Prob 

Chi-Square 22 2744.99 <.0001 

Likelihood Ratio Chi-Square 22 2728.32 <.0001 

Mantel-Haenszel Chi-Square 1 29.9297 <.0001 

Nonparametric k-means clustering results for compositions in major mode shows better results than other, 

because the smallest number of members in cluster is chosen to be 2. The biggest frequency has third cluster, 

which has tonic, dominant and the leading down degree in music scale (see Table 3). 

Table 3. Clusters of notes in major. 

CLUSTER Notes 

1 D+ G+ A+ . 

2 C+ E F A 

3 C D G . 

4 F+ B . . 

In minor mode k-means clustering gives minor tonic triad with subdominant degree of scale in the first cluster, 

which is most frequent cluster in compositions with minor mode (see Table 4). If first cluster is the most 

frequent, then composer has more minor compositions than major. A personal analysis can be made by 

analysing Figure 1. Bizet, Debussy and Gershwin have more minor compositions in this sample. 

Table 4. Clusters of notes in minor. 

CLUSTER Notes 

1 C D+ F G 

2 C+ F+ A . 

3 D G+ . . 

4 E A+ B . 

 
Figure 1. Note clusters’ from table 4 frequencies. 

In the dendrogram, we have clusters of variable – note type, which gives similar results as variable rest in minor 

mode compositions. There are used geometrical single linkage, average linkage, centroid and Ward’s methods, 

and probability the EM algorithm for clustering. Geometrical methods can be easily realized and they are 

widely used of its simple application (Lampropoulos & Tsihrintzis, 2004; Novello, McKinney & Kohlrausch, 
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2011). The average linkage tends to join clusters with small variances, and it is slightly biased toward producing 

clusters with the same variance. A disadvantage of Ward’s algorithm is that the method does not guarantee 

optimal partitioning of objects into clusters. Moreover, due to the natwe of clustering, the minimum value is 

contingent on previously formed clusters, somewhat biasing the results. The centroid method is more robust to 

outliers than most other hierarchical methods but in other respects might not perform as well as Ward’s method 

or average linkage. The single linkage method shows good cluster separation in the studied data, therefore the 

largest distinctness deserves the EM algorithm. Additionally, this algorithm has more accurate results. Vertical 

line is the dividing line, where criterion   consider choosing the clusters. The dependency on the size of music 

works, the type of clustering, the number of clusters, and the distance between the investigated objects is of 

rather a similar nature (in term of quality). The result is two multiple clusters: first one has general values 1/2, 

1/4, 1/16, second – 1/64, 1/4*, 1/2*, 1/32, 1/16*, 1/8*, 1 (see Figure 2). Values that make a single-value cluster 

are 1/32*, 1*, 1/8. Clustering with different distance method, we get different clusters results if we choose the 

same dividing line. 

 
Figure 2. Dendrogram of note type. 

Difference in rhythm between current styles is shown in Table 5. All the shorter notes, that are prolonged, in 

modern style appear with bigger probability. It illustrates syncopated rhythm, which is more popular in jazz and 

other modern genres. 

Table 5. Distribution of variable note type by style. 

t Classic, % Romantic, % Modern, % 

1/64 0 0.02 0 

1/32 0.84 0.99 8.48 

1/32* 0.27 0 2.18 

1/16 22.91 18.35 29.17 

1/16* 1.01 1.53 7.88 

1/8 50.15 45.8 31.43 

1/8* 1.64 1.8 4.13 

1/4 15.23 21.89 9.01 

1/4* 1.31 2.06 1.11 

1/2 5.19 5.87 3.94 

1/2* 0.39 1.38 0.31 

1 1.05 0.32 2.34 

1* 0 0.01 0.02 
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CONCLUSIONS: 

The investigation made by classical, romantic or modern music styles and their composers has proved the point 

that style or composers identity can be recognized by statistical analysis results. The clustering analysis of notes 

creates chords or triads that satisfy the norms and standards of music – analysis of minor compositions excludes 

the tonic triad. Cluster analysis visually shows differences between styles and composers. Rests and types of 

notes are clustered into groups of classical and syncopated rhythm, so the information about composition style 

is characterized. 
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