
RRRResearchersesearchersesearchersesearchersWWWWorldorldorldorld -Journal of Arts, Science & Commerce ■ E-ISSN 2229-4686 ■ ISSN 2231-4172

International Refereed Research Journal ■ wwwwww..rreesseeaarrcchheerrsswwoorrlldd..ccoomm ■ Vol.– III, Issue–4(4),October 2012[83]

DEVELOP INFORMATION SYSTEMS

USING XML AND FRAMEWORKS

Ms. Shraddha C. Somaiya,

Lecturer,

Little Flower College of
Management and Engineering.

Gundowli, Andheri(E),Mumbai, India.

Ms. Aparna Sahebrao Shinde,

Lecturer,

Little Flower College of
Management and Engineering.

Gundowli, Andheri(E),Mumbai, India.

ABSTRACT

To accomplish the software development time and cost constraints this development should

take place in an environment that helps the designer to deal with the large amount of concepts

obtained during the domain analysis phase and the semantic gap between those concepts and

the object oriented design model due to their different levels of abstraction. This paper

describes the main features of an environment designed to support the development of IS

software based on framework reuse and XML specifications.

Keywords: Reuse, Framework, Domain Analysis, XML, Object-Oriented.

RRRResearchersesearchersesearchersesearchersWWWWorldorldorldorld -Journal of Arts, Science & Commerce ■ E-ISSN 2229-4686 ■ ISSN 2231-4172

International Refereed Research Journal ■ wwwwww..rreesseeaarrcchheerrsswwoorrlldd..ccoomm ■ Vol.– III, Issue–4(4),October 2012[84]

INTRODUCTION:

The cost and time-to-market constraints imposed on modern software development oblige application

designers to leave the made from scratch approach and adopt a reuse enabled support to software development.

As a consequence during the system development proven solutions such as Components [6] and Frameworks

[7] must be composed with an application initial specification to obtain the final design/code. It is also
important that the act of achieving this application initial specification be handled by a process that captures

domain knowledge and guides the application designer to map/trace its translation to any design

representation, such as Object Oriented Design , from where the final specification can be extracted.

In this paper we report the ongoing development of an environment that uses a Domain and Reuse Driven

approach to the software development problem. This work is an extension of the approach presented in [19] with

the introduction of the XML/XMI standards [10] to represent the designs involved. Another change to the

approach is the use of a framework design language to be able to deal with generic framework specifications.

It is also important to mention that such an approach should be based upon some characteristics:

• Compatibility - It must use market standards to provide compatibility/integration with other systems.

• Code Legibility - During development the compilation/debugging is usually done with a market IDE such

as Borland JBuilder and IBM VisualAge, so the user must understand the final code.

• Focused on OO - The user must only know OOP techniques

• UML - Due to OMG standards.

• Upgradable - Reuse actions such as inheritance, composition, patterns, frameworks and aspects can evolve.

Figure 1 - The approach overview

THE APPROACH OVERVIEW:

The major software development approaches in use today [13][11][12] state that to obtain a good

representation of an application, the designer should collect the behavior and structure of the application by

using a repetitive and incremental approach. This approach begins with the Requirement Analysis Phase

where the functional and non-functional requirements of the system are collected to represent its main

functionality (from the end user’s point of view). After that the application designer moves to the Design

Phase to represent the functionality by using an object-oriented representation. In this phase the designer

represents the main structures of the system and how they collaborate to achieve the systems functionality.

In the last phase, the Code Phase, the object-oriented structure is represented in some programming

language. Usually, the designer moves back to the first phase to begin another development cycle and to

reach the desired level of application representation.

Our approach introduces an explicit Reuse Phase in the classical process (see Figure 1). In this phase the

application designer must identify the possibility of reuse of an object-oriented framework that represents a

proven solution to the application domain he is working on. To achieve this reuse, the designer should search

the Reuse Artifact Repository to find if a reuse artifact can be used. This phase occurs between the Design

Phase and the Code Phase. Once the reuse artifact is chosen, the application designer will be guided to

perform a set of reuse actions that were defined by the reuse artifact designer. It is important to say that the

match between the designer’s application specifications — that is, the application OO Design — and the

RRRResearchersesearchersesearchersesearchersWWWWorldorldorldorld -Journal of Arts, Science & Commerce ■ E-ISSN 2229-4686 ■ ISSN 2231-4172

International Refereed Research Journal ■ wwwwww..rreesseeaarrcchheerrsswwoorrlldd..ccoomm ■ Vol.– III, Issue–4(4),October 2012[85]

reuse artifact stored in the repository is completely manual.

To represent the application design and the reuse design, we have chosen the Feature Oriented Domain

Analysis Method, FODA, in combination with the Unified Modeling Language, UML, to achieve a more

precise representation of the application semantics and provide compatibility with the market standards.

Since our approach combines O.O. designs, we’re particularly interested in the class diagram and how to

obtain it. Naturally, class diagrams are a structural refinement of domain designs that in our approach are

obtained combining Features Diagrams and Use Cases in a guided way, to provide traceability. Once these

UML class diagrams contain a good representation of the domain functionality and structure we can use

them as the source for the composition (reuse) step.

The problem now is to obtain a representation of those diagrams that can be manipulated by programs. This

can be achieved through the use of a XML representation called XMI.

XMI is an acronym for XML Metamodel Interchange, which is an attempt of the OMG/W3C organizations to

provide a platform independent representation of UML designs. For that they propose a complete representation of

UML using the XML format that can be shared among software vendors [10]. The XMI representation of a design

can be achieved using case tools like Argo/UML [2] or using the IBM XMI toolkit converter for Rational Rose .

An important point in our approach refers to the initial design boundary. To obtain a high level of reuse we

propose that the designer initially should specify the core functionality and structure of his application using

Domain Engineering techniques such as Domain Analysis and Domain Design [3]. With this approach we

tend to isolate the application domain design from technological issues, such as WEB enabled, agent usage,

distribution and so on, which tend to be the most variable part. After that the designer executes the

composition step, that is the framework reuse. For example, in Figure 2 we have the specification of two

domains, Sales and Rental, that can be composed with existing frameworks such as WFFrame [19], Dasco

[8], VMarket and JAFIMA [6].

OBTAINING DOMAIN INFORMATION:

DOMAIN ANALYSIS:

The growing demand for more efficient, cheaper and delivered on schedule software systems suggests that

software development needs to take place in an environment that allows proved solutions to be modified,

combined and adapted to be used in new software construction projects.

One of the answers provided by Software Engineering to this question can be found in the field of Domain

Analysis, which can be defined as the study and organization of common aspects and variations existing

among various software systems of an application domain. This process will provide a set of models

describing the applications of a domain in a generic fashion, besides strategies to construct new software

systems from the generic artifacts produced [4].

THE FODA METHOD:

During the late 1980s and early 1990s the Software Engineering community proposed several domain

analysis methods. Despite the existing differences between them, these methods are functionally equivalent,

invariably exhibiting operations such as aggregation, classification, specialization and parameterization [3].

RRRResearchersesearchersesearchersesearchersWWWWorldorldorldorld -Journal of Arts, Science & Commerce ■ E-ISSN 2229-4686 ■ ISSN 2231-4172

International Refereed Research Journal ■ wwwwww..rreesseeaarrcchheerrsswwoorrlldd..ccoomm ■ Vol.– III, Issue–4(4),October 2012[86]

Because of the existing similarities between these domain analysis methods, we have chosen the FODA

method (Feature Oriented Domain Analysis) [4] developed by the Software Engineering Institute (SEI) as

the method to be used in connection with our development approach. The choice of FODA can be credited to

the vast documentation available, including some case studies, and the tight relationship between the models

produced by the FODA method and those found in the majority of the Object Oriented Analysis and Design

methods (OOADM). One of the main characteristics of FODA is the process of identification of the more

relevant software features of an application domain. In the FODA method, a feature is defined as a user-

visible aspect or a characteristic of a software system.

THE ANALYSIS OF A DOMAIN:

In the FODA method, the domain model is subdivided into three distinct models that represent

commonalties and existing differences between applications of a given domain. They are:

• Feature Model – which captures the main user-visible aspects of systems in a domain.

• Information Model – which captures the main abstractions, and the relationships between them, in an

application domain.

• Operational Model – which models the functional and behavioral aspects of applications in a domain.

THE REUSE MODEL:

The development of reuse artifacts has begun with the introduction of the extensibility characteristics into

programming languages. It all begins by wrapping lines of code into a function/procedure element for later

use like in Fortran. After that those procedure/functions could be stored into packages to be shared with

other development departments. Object-oriented languages appear in this scene as an extreme reuse

approach to software development. They claim that inheritance and composition of well-encapsulated

specifications, called classes, will improve the development process by enabling designers to reuse these

specifications as the starting point of their new software. This approach has evolved over time to the reuse of

collection of related classes that can be domain specific, called Frameworks [6] or solutions specific called

Design Patterns [14].

The problems with the Framework reuse can be stated as:

• The designer should know the reuse artifact prior to its usage to be able to check if his problem (the

application development) can take any benefit from reuse [18].

• Once the application has been chosen, the designer must know what/how to reuse, that is, the reuse points

(What are the extension/flexible points [1] to redefine? How to redefine?).
The first item is a problem-solution match that can be solved by a ‘simple’ program if designers use a formal

description of both sides. Unfortunately these formal descriptions are hard to use, leading designers to use a

more informal notation like UML. The problem with the UML notation is that only by reading plenty of

informal descriptions, such as use-cases and attached notes, can the user capture the semantic of the design.

The second item reflects a documentation problem. To reuse a framework the reuser must be able to identify

and define what Mattson called the application specific increments, that is, the code that is dependent on the

application being developed that will be used to instantiate the framework.

A CASE STUDY:

To provide a complete understanding of the approach, in this section we report about a fictitious case of a Rental

RRRResearchersesearchersesearchersesearchersWWWWorldorldorldorld -Journal of Arts, Science & Commerce ■ E-ISSN 2229-4686 ■ ISSN 2231-4172

International Refereed Research Journal ■ wwwwww..rreesseeaarrcchheerrsswwoorrlldd..ccoomm ■ Vol.– III, Issue–4(4),October 2012[87]

System development that was the approach first use. The purpose of the Rental System is to rent vehicles to users,

providing control over the transactions within the Rental Company. It is important to point out that during the

domain analysis phase it was defined that the system matches the definition of workflow systems adopted by the

WFFrame [19] framework, where a Rental could be represented as a workflow node with internal operations.

According to our approach the development begins with the creation of a Features Model [4], where we can

represent the system’s main characteristics. Figure 5 shows that payment is accepted at reservation time,

rental time or return time. Beyond this, payment may be made by credit card, check or cash.

The next step is the construction of the Use Case Model. Most of the features can be traced to a use case. Optional

features are represented as extension points in the Use Case Model [1]. For instance, a payment is an extension

point in the Report Reservation of a Vehicle, Report Rental of a Vehicle, and Report Return of Vehicle use cases.

Extension points are represented as tagged values attached to a use case through a UML note.

Both Use Case Model and Features Model are important. The objective of the Features Model is to provide a

description of the main characteristics of the system. The Use Case diagram is a thorough description of the

functional requirements of the system and will drive the development process [13]. The matching of these

two diagrams will provide a way to check the integrity of the domain knowledge.

CONCLUSION:

Due to the simplicity of the approach presented in this paper and due to our development experience we

believe that it can be used in a great variety of Information Systems where top-down decomposition in the

design is a largely used technique.

Although the approach was successful in its first use, a lot of improvements must be made and we divide

RRRResearchersesearchersesearchersesearchersWWWWorldorldorldorld -Journal of Arts, Science & Commerce ■ E-ISSN 2229-4686 ■ ISSN 2231-4172

International Refereed Research Journal ■ wwwwww..rreesseeaarrcchheerrsswwoorrlldd..ccoomm ■ Vol.– III, Issue–4(4),October 2012[88]

them into two groups. The domain modeling approach and the reuse approach.

In the domain-modeling phase we need to create annotations in the models to be able to capture things such as

inheritance and generalization to improve the mapping from the XMI to the O.O. design model. In the reuse

model we need to be able to express more redefinition points that are not defined as hotspots or frozen-spots in

the frameworks design but, rather, as an intermediary “spot” where the designer is not obliged to define ASI.

This is particularly important when the framework provides user interfaces that “can” be customized.

Another important extension is the construction of an integrated environment to support the execution of the

reuse script, using a kind of wizard to avoid name conflict and multiple inheritance conflict using

Refactoring [15] in the application design.

REFERENCES:

[1] Jacobson, I.; Griss, M.; Jonsson, P. Software Reuse: Architecture, Process and Organization for

Business Success. Addison-Wesley, Reading, Massachusetts, June 1997.

[2] Argo/UML Description found at http://www.argouml.org.

[3] Arango, G.. Domain Analysis Methods. In Advances in Software Reuse: Selected Papers from the

Second International Workshop on Software Reusability, p.17-49, March 1993, Lucca, Italy. Edited by

Ruben Prieto-Diaz and William B. Frakes, IEEE Computer Society Press, 1993.

[4] Kang, K.C.; Cohen, S.G.; Hess, J.A.; Novak, W.E. and Peterson, A.S.. Feature-Oriented Domain

Analysis (FODA) Feasibility Study (CMU/SEI-90-TR-21). Pittsburgh, PA, Software Engineering

Institute, Carnegie Mellon University, Nov 1993.

[5] Navathe, S.B.; Batini, C.; Ceri, S.. Conceptual Database Design – an Entity-Relationship Approach.

Benjamin Cummings, Redwood City, California, 1992.

[6] Fayad, M.E., Schmidt, D.C., Johnson, R., Implementing Application Frameworks, Wiley 1999.

[7] Pree W. Design Patterns for Object-Oriented Software Development. Addison-Wesley, Reading Mass., 1994.

[8] Silva, A.R. Programação Concorrente com Objetos: Separação e Composição de Facetas com

Padrões de Desenho, Linguagem de Padrões e Moldura de Objetos. Dissertação de Doutorado

Universidade Técnica de Lisboa – Instituto Superior Técnico Portugal 1999.

[9] Oliveira, T.C. ; Carvalho, S.E.R. ;Lucena C.J. P. DSSFrame - A Decision Suppot System with Agents.

Techinical Report Pontifícia Universidade Católica do Rio de Janeiro – Brazil 2000.

[10] XMI Specification found at http://www.omg.org/technology/xml/index.htm.

[11] Pressman, R.S. Software Engineering : A Practitioner's Approach. McGraw Hill, New York, NY, June 2000.

[12] Sommerville, I. Software Engineering. Addison-Wesley, Reading, Massachusetts, August 2000.

[13] Jacobson, I. The Unified Software Development Process. Addison-Wesley, Reading, Massachusetts,

February 1999.

[14] Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J. Design Patterns: Elements of Reusable Object-

Oriented Software. Addison-Wesley, Reading, Massachusetts, October 1995.
[15] Fowler, M. Refactoring : Improving the Design of Existing Code. Addison-Wesley, , Reading,

Massachusetts, June 1999.

[16] Fontoura, M.; Crespo, S.; Lucena, C.J.P.; Alencar, P.S.C.; Cowan, D.D. Using Viewpoints to Derive

Object-oriented Frameworks: a Case Study in the Web-based Education Domain. The Journal of

Systems and Software, 54 (2000) 239-257

[17] Fontoura, M. F. M. C. A systematic approach to framework development, PhD Thesis, Department of

Computer Science, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), 1999.

[18] Mattsson, M. Evolution and Composition of Object-Oriented Frameworks, PhD Thesis, Department of

Software Engineering and Computer Science, University of Karlskrona/Ronneby, 2000.

[19] Oliveira T. C., Mathias I., Lucena, C. J. P. A Framework Approach for Workflow Software

Development Proceedings of IASTED International Conference on Software Engineering and

Application, p330-335, Las Vegas USA, November 2000.
