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ABSTRACT 
 

Defects are common in software systems and can potentially cause various problems to software users. 

Different methods have been developed to quickly predict the most likely locations of defects in large 

code bases. Most of them focus on designing features (e.g. complexity metrics) that correlate with 

potentially defective code. Those approaches however do not sufficiently capture the syntax and 

different levels of semantics of source code, an important capability for building accurate prediction 

models.In our approach, three supervised machine learning algorithms are considered to build the 

model and predict the occurrence of the software bugs based on historical data by deploying the 

classifiers Logistic regression, Naïve Bayes, and Decision Tree. Historical data has been used to 

predict the future software faults by deploying the classifier algorithms and make the models a better 

choice for predictions using random forest ensemble classifiers and validating the models with K-Fold 

cross validation technique which results in the model effectively working for all the scenarios. 
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INTRODUCTION: 

Machine Learning algorithms sprawl their application in various fields relentlessly Software Engineering is not 

exempted from that. Software bug prediction at the initial stages of software development improves the important 

aspects such as software quality, reliability, and efficiency and minimizes the development cost. In majority of 

software projects which are becoming increasingly large and complex programs, bugs are serious challenge for 

system consistency and efficiency. In our approach, three supervised machine learning algorithms are considered 

to build the model and predict the occurrence of the software bugs based on historical data by deploying the 

classifiers Logistic regression, Naïve Bayes, and Decision Tree. Historical data has been used to predict the future 

software faults by deploying the classifier algorithms and make the models a better choice for predictions using 

random forest ensemble classifiers and validating the models with K-Fold cross validation technique which results 

in the model effectively working for all the scenarios. With the growing complexities of the software, the number 

of potential bugs is also increasing rapidly. These bugs hinder the rapid software development cycle Bugs, if left 

unresolved, might cause problems in the long run. Also, without any prior knowledge about the location and the 

number of bugs, managers may not be able to allocate resources in an efficient way. In order to overcome this 

problem, researchers have devised numerous bug prediction approaches so far. 

 

RELATED WORK: 

The following is the similar work identified in the field of bug prediction using machine learning algorithms. In 

a work done by G. Eason et. al [1] it has been found that, focused developers makes less error in software 

components. Less focused developers always make more errors according to the industry standards. They have 

constructed bug prediction model using three techniques for data set obtained from 26 projects. The important 
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measure considered in their work is scattering changes performed by developers. The obtained results are more 

promising and high complement with respect to predictors commonly used in the literature. The results of a 

“hybrid” prediction model combining predictors with the existing ones are also shown. But the disadvantages we 

found that even though the Models have been evaluated across the models, the cross validation on various data 

sources was not done to understand the accuracy of the machine learning model, the number of factors selected 

are not exhaustive and to get right accuracy right number of factors needs to be selected. J. Clerk Maxwell [2] 

used a Semi-supervised structured dictionary learning (SSDL) approach. This approach is really giving very good 

results if there is lack of historical data for building accurate model. Semi-supervised defect prediction (SSDP) 

and Cross-project defect prediction (CPDP) are the possible effective solutions arrived by them. They proposed a 

semi-supervised structured dictionary learning (SSDL) approach for CSDP and WSDP. They used limited 

labeled defect data and huge unlabelled data. In their work it is concluded that SSDL performs better than 

related SSDP methods. This happens for two data sets in the CSDP scenario. The issue with this approach is cross 

project supervised learning algorithms generalizes the predictions. The choice of variables have to be satisfactory 

across the projects. Hence, it leads to get inaccurate predictions within the project level. Software testing is the 

process that verifies and validates quality of the software delivery. In SDLC this is an essential phase of software 

development life cycle. In the work [3], a set of various software metrics are used for predicting software fault 

and identified that main aspect of the classification techniques are base line models. When base line models are 

used, these are weak learners and will not have the right amount of accuracy required. One way to monitor 

software quality is to find software faults or defects and then correct those faults. Even though software metrics 

usage is meant for measuring software quality, it can be used to identify the faulty modules in software. With this 

model construction we can analyze and able to predict the fault prone modules. The analysts work on this 

prediction models for long time, now it has become hot issue and given more significance. In Paper[4], Genetic 

algorithm based object oriented Unified Modeling Language (UML) approach is applied and they worked the 

detailed design of software fault proneness. Software Metrics Information Extractor (SMIE), Fault Classes 

Detection System (FCDS) and Genetic Algorithm Generator (GAG) are used in their approach. Blank lines(bl), 

classes(c), code lines(cl), comment lines(cml), executable statements(es), files(f), functions(fn) and lines(ln) [5] 

are used as software metrics here. In software Engineering defect or bug prediction captured interest among 

analyst and developers over a period of time. The driving scenario is resource allocation. In order to develop 

quality software, more time and resources need to be allotted for the software system design with a higher 

probable quantity of bugs. A standard defect prediction model is presented in [6], which deals with a publicly 

available data set consisting of several software systems. Comparative study on well known techniques are 

explained in their approach. Though the good approach is devised, the number of factors considered for the 

analysis are very less. The simulated system is not representing the real world systems. Accuracy score was 

calculated on single data set. Comparison across multiple datasets could have been a better choice. In the approach 

[7], they tried to diminish the gap between two technical domain of knowledge such as software engineering and 

data mining. Maximize the reach through marketing and communication. Using integrated approaches bug 

predictions are advocated, instead of single classifier/ clustering. It has been shown that soft computing techniques 

such as genetic algorithm, fuzzy c-means clustering and random forest classifier produces better experimental 

results. The problem here is majority of the classification techniques are base line models. When base line models 

are used, these are week learners and will not have the right amount of accuracy required. In the work done by 

Gyimoet. al [8], they used the Object-oriented metrics given by Chidamber and Kemerer [11]. These metrics are 

calculated for the open source software Web and e-mail suite Mozilla. The results are compared with bug data 

base Bugzilla which uses regression and learning techniques for validation. The downside of this approach is 

regression models required to follow linear relationship between independent variables. In real time data it`s 

unlikely to have linear relations. From the literature survey done, we found that it has been recommended to use 

more than one techniques combined to get better results. 

 

MACHINE LEARNING ALGORITHMS: 

This section deals with the concept of the algorithms used in our approach. 

Logistic Regression: Logistic regression method solves classification problems. It is meant for predicting the 

likelihood of an entity belonging one class or another class. There are many such examples like marketing effort 

to know about whether customers purchase or non-purchase, creditworthiness for paying EMI is high or low, in 

insurance whether there is high or low risk of accident claim. The logistic regression follows a s-shaped curve to 

the predict the feature of the a binary response variables. In this approach complex optimized equation is obtained 
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by converting from the logistic equation to the OLS-type equation. The Eq. (1) which is derived from probabilistic 

approach is given below. P is the probability for Y=1 and 1-P is the probability of getting Y=0; 

 

ln (P/1-P) = a+bX (1) 

 

P can also be obtained from the regression equation. 

 

The regression equation given in Eq. (2) calculates the expected probability for a given value of X for Y=1. 

 

P = exp(a+bX) / 1+exp(a+bX) = e(a+bX) / 1 + e(a+bX) (2) 

 

In our model fitting we used Chi-square instead of R2 as the statistic. Chi-square is a measure of the observed 

and the expected values. It is the fit of the observed values (Y) to the expected values (Y’). If the deviance of the 

observed values is more from the expected values, the fitness of the model questionable. The optimization criteria 

is having chi square as small as possible. More variables added means the deviance will be smaller in turn 

there is an improvement in fit. Objective is to find the minimum deviance between the observed and predicted 

values to obtain the best fitting line using calculus. With the help of machine learning algorithms, the computer 

derives the best fit by trying different iterations with different methodologies to find the smallest difference 

between the actual and predicted values. 

Naïve Bayes: Bayesian Decision Theory is predecessor to the concepts like Version Spaces, Decision Tree 

Learning and Neural Networks. The applications includes in the field of Statistical Theory and Pattern 

Recognition. This algorithm helps to understand Bayesian Belief Networks and the EM Algorithm. The 

fundamental assumptions the naïve Bayes theorem considers is the classes are independent with each other and 

there will not be any correlation between the variables. Equation (3) is used in this algorithm. 

 

P(c/x) = P(x/c) P(c) / P(x) (3) 

 

P(c|x) is the posterior probability of class (c, target) given predictor (x, attributes). P(c) is the prior probability of 

class. P(x|c) is the likelihood which is the probability of predictor given class. P(x) is the prior probability of 

predictor. 

 

Decision tree & Random Forest: Decision tree is a one of supervised learning algorithms that is widely used in 

classification problems with a fixed target variable. This algorithm can be applied to both categorical and 

continuous input and output variables. In this technique, the given data set is divided into two or more 

consistent sets based on most significant input variables which act as differentiator. Random Forest is a ensemble 

classifier that is also meant for classification, and regression. It constructs the number of decision trees on 

different sub-samples of the dataset and takes average to get the predictive accuracy and also controls over fitting 

of the model. For classification its output is based on mode of the classes and for regression it uses mean of the 

individual trees. 

 

 Consider the classifier with N number of rows and M number of column or factors. 

 The task is to split M input variables to find the node of the tree and M should be smaller than M 

 Select the training dataset for each decision tree by selecting the n occurrences with replacement from 

all available training rows and use the other rows to test the algorithm accuracy. 

 For each child of the tree, randomly choose m variables on which we can make the decision of the node. 

 Use Information gain or Gini index prioritize the feature importance of the columns. 

 The final classifier from multiple trees will be constructed using voting techniques. The highest of group 

of trees of a particular class will be prioritized. 

 

METHODOLOGY: 

Starts with solving the problem with identifying the right factors required for bug prediction. The prioritized 

factors are considered for creating analytical data set. Base line models and benchmarking models are 

implemented on top of analytical dataset. All algorithms are validated through k fold validation methodology to 

find the right accuracy. Any supervised machine learning algorithms will require a systematic flow of the below 
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steps. These are generalized frameworks which can help in defining the problem better and executing the all the 

phases listed out below in structured manner. The phases of our system is given in the Figure 1. 

 

a. Problem Solving: Defining the problem better. 

b. Data pre-processing: Creating the base dataset required for the analysis. 

c. Baseline Model: Creating the baseline model for predicting the bug occurrence. 

d. Bench marking Model: validating the created model with bench marking models. 

e. Model Validation : Validate the model performance on confusion matrix, or ROC-AUC Curve. 

f. K Fold Validation: Test the model performance across the different datasets. 

 

 
Figure 1: Block Diagram of Software Bug Prediction System 

 

Problem solving framework is one of the important phases of the any machine learning problem is how to define 

the problem statement clearly. The key factors required for the analysis are identified in the process. It will help 

in listing down the factors without bias. The factor map and Hypothesis are generated. Identify and prioritize the 

important factors based on actions and feasibility matrix. 

Data pre-processing (exploratory data analysis) majority of the time the data collected for running machine 

learning algorithms is not available readymade. Hence, the data requires pre-processing which will help to get 

the right predictions. The fore most step in best model building is data pre-processing followed by Data 

Collection, Data Merging, Null Value Treatment, Outlier Treatment, Garbage Value Removal and creating the 

analytically ready data set for the Effective Data Analysis. In our work, the above pre-processing steps are 

incorporated to create the analytical data set. 

Baseline model logistic regression algorithm has been used as one of the base models in our work. As the bug 

prediction is a binary response variable, the bug behavior can be predicted by multiple algorithms. Logistic 

Regression is considered as base model and other algorithms will be considered as benchmarking models. Data 

set is divided in to train and test set. The performance of the models is validated by identify the accuracy score, 

confusion matrix, ROC- AUC curve designing, and Probability curve. With these measures it has been tried to 

improving upon the model performance and Defect Detection. 

Bench Marking Model: Random Forest Classification Bagging or Boot strap aggregation is a method that 

minimizes the predictions variance by merging the outcome of more than one classifiers that work on various 

sub-samples of the same data set. 

The steps followed in bagging are: 

1. Create Multiple Datasets: New data sets are formed from the original data set as a part of columns and 

rows. These are called hyper parameters. 

2. Build Multiple Classifiers: Multiple Classifiers are built on each data set. On different data set the same 
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classifier is applied and results are obtained. 

3. Combine Classifiers: Combining the predictions of all the classifiers are achieved by a mean, median or 

mode value depending on the problem statement considered. The obtained results are always more accurate 

than a single model. 

Model validation Confusion Matrix Confusion matrix is the preferred choice for measuring the accuracy of 

random forest decision tree, Naive Bayes and majority of the classification algorithms. It is also known as error 

matrix is one of the important metrics to decide the accuracy of the classification algorithms. The confusion 

matrix for a binary classifier will be 2X2 Size array which will help in analyzing the properties of the 

classification algorithm like the true positive rate, true negative rate, false positive rate and false negative rate. 

The accuracy score of the model also will be determined by using confusion matrix. Accuracy matrix alone cannot 

be used in deciding the accuracy of the mode. Hence, We will be deriving multiple parameters like f1-score, 

precision, provenance and etc. from the confusion matrix to enhance the interpretation capabilities of the model . 

Type 1 and Type II errors are decided based on how represent the actual and predicted values in the matrix. If the 

response variable has more than 2 classes, the confusion matrix will be of the same size of the unique values in 

the predictor variable. 

ROC – AUC Curve: A Receiver Operating Characteristic curve, i.e., ROC curve, is a visual representation that 

is meant for interpreting the true predictive power of the binary classifier system when its threshold is varied 

discriminately. The ROC curve takes true positive rate on x-axis and false positive rate on y axis at various 

threshold settings. True positive rate is a measure of how good the classifier was able to predict positive values 

out of the all actual positive values. On x axis and y axis for different intervals, the true positive rate and false 

positive rates are represented at different probability values and these measures are plotted. Higher the area under 

the curve signifies model has better accuracy. 

Cross validation: It is an effective technique to interpret the model results. The datasets will be divided into 

multiple folds and in each iteration the algorithm will be executed to measure the accuracy. The average accuracy 

across the models will be computed to get the final accuracy of the models. If there is any outliers or skewness in 

the data , it will be course corrected by using cross validation techniques . The k-fold validation technique is 

efficient strategy to predict the final accuracy of the model . The data set is created into multiple parts and the 

algorithm will be executed in multiple iterations and at each iteration the accuracy will be measured and finally 

the average of 10 accuracy scores will be treated as the final score for the models. 

 

RESULTS AND DISCUSSION: 

For our implementation, Python the multi-paradigm programming language with rich Data science packages has 

been selected. The data is collected from GitHub hosted projects. In this work, data model was built using Logistic 

regression, Decision Tree, Naïve Bayes and Random forest ensemble classifier. K-Fold cross validation is a recent 

and widely accepted type of cross validation technique in machine learning. 

The observations made from figure is listed out below: 

 

 The Base line model and one bench mark model produces the same accuracy. Random Forest produces 

the high accuracy rate. 

 Overall feedback is that all the classifiers are producing promising results for the data set obtained. 

 

The results of our bug prediction using four learning methods are given in Figure 2. The cell in figure gives 

accuracy of the techniques used (percentage) on test data set. 
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Figure 2: Results of Bug Prediction 

 

Identified some similar work and analyzing the accuracy obtained, we have found that in the work [12] using 

Extreme learning machines with three different types of Kernels, the accuracy achieved is around 87.5%. In the 

work [13] using Sigmoid model, 75% of accuracy has been achieved. Even in other models of them perform less 

than 85% accuracy except multiquadtric model. Our algorithms hows better results than these approaches. 

 

CONCLUSION AND FUTURE WORK: 

Bug prediction improves the software development process in terms of production cost, eases the maintenance 

phase and helps to increase reliability of the software. In our proposed work we try to use models for this process. 

Models constructed using individual classifiers are tend to have less accuracy. Models are not validated across 

different samples. Hence, if random samples are taken, there is high chance of getting less accuracy. Enough 

priorities were not given on variable selection (Prioritization of Factors), Feature engineering, variable 

transformations and Variable reductions which can improve the accuracy of the models to the great extent. There 

are multiple algorithms which can be used to predict the bug occurrence. Random forest algorithm is the preferred 

choice because of the ensemble nature. Instead of constructing the individual algorithms, multiple decision trees 

are used to predict the final outcome with the help of bagging logic, which leads to better accuracy. K fold 

validation is applied to eliminate the biasness in the dataset. In Future, the model can be trained in artificial neural 

networks to increase the accuracy of the predictions. A forecasting model can be built to predict the number of 

bugs which can be used as companion to get more accurate results. Our initial thought is to include Artificial 

Neural Network algorithm also. However, some of the algorithms were able to generate 100 % accuracy with 

train and test datasets. Hence, it is decided to settle down with Machine learning algorithms. If we increase the 

dataset size ANN will be a good option to proceed further. 
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